
© Kalray SA. - All Rights Reserved. 1

www.kalrayinc.com

SOFTWARE PIPELINING FOR KERNEL CODE

GENERATION

MLIR (Un)School 2025

Benoît Dupont de Dinechin,
Chief Technology Officer

© Kalray SA. - All Rights Reserved. 2© Kalray SA. Confidential - All Rights Reserved. 2

1.Introduction and Motivation

2.Deterministic Scheduling

3.Instruction Scheduling

4.Modulo Scheduling

5.Work in Progress

6.Conclusions and Outlook

AGENDA

© Kalray SA. - All Rights Reserved. 3

Dynamic instruction
scheduling

Architectural register
renaming

Speculative execution past
predicted branches

Hit-under-miss L1 cache

Hardware prefetching into
L2 cache

Multiple instruction issue in
one cycle if no resource or
register conflicts

Optional architectural
register renaming

No speculative execution
past branches

Hit-under-miss L1 cache

Hardware prefetching into
L2 cache

SUPERSCALAR OUT-
OF-ORDER (OOO)

SUPERSCALAR IN-
ORDER (ARM A53)

Multiple instruction issue in
one cycle if bundled by
compiler

No architectural register
renaming

Control speculative
execution directed by
compiler

Exploit hit-under-miss or
cache-bypass loads

VLIW (FISHER STYLE,
NOT EPIC)

SOFTWARE PIPELINING MOTIVATION

Compiler optimizations to approach the effects of OoO superscalar execution in inner loops

• reorganize instructions across iterations,

• rename registers, preload registers,

• predicate or speculate instructions.

© Kalray SA. - All Rights Reserved. 4

SOFTWARE PIPELINING EXAMPLE ON ARM A53

‘SAXPY’ loop from BLAS

Need to use [restrict] to inform compiler
there are no data dependences between
the memory accesses

Compilation with GCC –O2 on a ARM
workstation (cortex A54 cores)

Loop: load x[i], load y[i], FMA, store z[i],
update loop counter, loop branch back

© Kalray SA. - All Rights Reserved. 5

SOFTWARE PIPELINING USING MODULO SCHEDULING

Loop body schedule

One iteration takes 11 clock cycles

Overlapped execution of successive loop body

One iteration started every λ = 3 clock cycles

Cycle LSU FPU Other

0v1=[x4*0x8+x1]

1v2=[x4+0x8+x2]

2

3 v1={v1*v0+v2}

4

5

6

7

8 [x4*0x8+x3]=v1 x4=x4+0x1

9 cc=cmp(x0,x4)

10 pc={(cc>0)?Loop:pc}

Cycle LSU FPU Other

0 v1=[x4*0x8+x1]

1 v2=[x4+0x8+x2]

2

3 v1'=[x4'*0x8+x1] v1={v1*v0+v2}

4 v2'=[x4'+0x8+x2]

5

6 v1''=[x4''*0x8+x1] v1'={v1'*v0'+v2'}

7 v2''=[x4''+0x8+x2]

3*N+5 [x4*0x8+x3]=v1 x4=x4+0x1

3*N+6 v1'''=[x4'''*0x8+x1] v1''={v1''*v0''+v2''} cc=cmp(x0,x4)

3*N+7 v2'''=[x4'''+0x8+x2] pc={(cc>0)?Loop:pc}

… [x4'*0x8+x3]=v1' x4'=x4'+0x1

… cc=cmp(x0,x4')

… pc={(cc>0)?Loop:pc}

… x4''=x4''+0x1

… cc=cmp(x0,x4'')

… pc={(cc>0)?Loop:pc}

In order to software pipeline, some loop temporary variables must be ‘modulo expanded’

Modulo variable expansion (MVE) consumes registers and requires loop kernel unrolling

MVE can be omitted on OoO CPU implementations with architectural register renaming

pipelined
loop prolog

pipelined
loop kernel

pipelined
loop epilog

© Kalray SA. - All Rights Reserved. 6

SOFTWARE PIPELINE CONSTRUCTION FROM KERNEL

Software pipelined reconstruction from the 1-periodic cyclic schedule at period λ

• Software pipeline stages A, B, C, D, E: blocks of instructions that span λ cycles

• Modulo expansion: variables that live more than λ cycles are assigned different registers

• Kernel unrolling: enable the cyclic register renaming of modulo expanded variables

• Alternative to modulo expansion: hardware or software register move of temporaries

© Kalray SA. - All Rights Reserved. 7

• Gaudi2 integrates
Habana’s fourth
generation Tensor
Processor Core.

• The TPC is a general
purpose VLIW processor
which is 256B SIMD
wide and supports FP32,
BF16, FP16 & FP8, in
addition to INT32, INT16
& INT8 data types.

• the TPC exposes a
DMA-free programming
model which significantly
eases SW development.

• Each AI Engine tile
consists of a very long
instruction word (VLIW),
single instruction multiple
data (SIMD) vector
processor optimized for
machine learning and
advanced signal
processing applications.

• AMD XDNA is a spatial
dataflow NPU
architecture consisting of
a tiled array of AI Engine
processors.

INTEL GAUDI AI
ACCELERATORS

XILINX VERSAL / AMD
XDNA AI ENGINES

SUCCESSFUL VLIW ACCELERATORS

Main applications in image processing, signal/telecom, AI

Synopsys, CEVA, Intel/Habana, AMD / Xilinx

© Kalray SA. - All Rights Reserved. 8

Classic VLIW architecture (J. A. Fisher)

• SELECT operation on Boolean value

• Conditional load/store/FPU operations

• Dismissible loads (non-trapping)

• Multi-way conditional branches

Compiler techniques

• Trace scheduling (global instruction scheduling)

• Partial predication (S. Freudenberger algorithm)

Main examples

• Multiflow TRACE (1987)

• Philips Trimedia (1998)

• HP Labs Lx / ST200 family (2000)

EPIC VLIW architecture (B. R. Rau)

• Fully predicated ISA + predicate define instructions

• Speculative loads (control speculation)

• Advanced loads (data speculation)

• Rotating registers

Compiler techniques

• Modulo scheduling (software pipelining)

• Full predication (R-K algorithm, J. Fang algorithm)

Main examples

• Cydrome Cydra-5 (1987)

• TI C6X DSPs (1998)

• HP-intel IA64 (2001)

VLIW ARCHITECTURE PRINCIPLES

Promote “horizontal microcode” to bundles of RISC-like instructions

Co-design architecture, microarchitecture and compiler optimizations

© Kalray SA. - All Rights Reserved. 9

The most suitable VLIW should exhibit four
basic features [Colwell et al. 1998 IEEE TC].

• One central controller issues a single long
instruction word per cycle.

• Each long instruction simultaneously
initiates many small independent
operations.

• Each operation requires a small, statically
predictable number of cycles to execute.

• Each operation can be pipelined.

In the same spirit as MIPS and the IBM 801,
the microarchitecture is exposed to the
compiler so that the compiler can make better
decisions about resource usage

• the architecture is load/store,

• there is no microcode.

Multiflow TRACE 7/300 is the entry model with
one ‘cluster’ of execution units

MULTIFLOW TRACE 7 SERIES

Designed as a target for a trace scheduling compiler

© Kalray SA. - All Rights Reserved. 10

Encoding instructions requires 41 bits and
instructions are fully predicated

Bundles of 3 instructions are encoded in 128 bits,
with template bits that specify the parallel groups

The GR registers have 64+1 bits for “Not a Thing”

Loads can be control-speculative, in case of traps
the “Not a Thing” bit is set and checked later

Loads can be advanced before possibly
interfering stores, with interference checked by
the “Advanced Load Address Table” (ALAT)

Rotating register are available on GR, FR
(floating-point) and PR (predicate)

ITANIUM ARCHITECTURE (IA64)

“Evolution of the VLIW architecture” through the Cydrome Cydra-5 then the HPL Play Doh

© Kalray SA. - All Rights Reserved. 11

KALRAY MPPA® SCALABLE MANY-CORE ACCELERATORS

3rd-gen MPPA® processor manufactured in TSMC 16nm, running at up to 1.2 GHz

4× MPPA3 v2 processors with 80 PEs per processor:

• 4× 49 TOPS INT8.32

• 4× 24.5 TFLOPS FP16.32

• 4× 1.5 TFLOPS FP32

Multiple Processors per Card

Many-Core Processor

Cluster of 16 PEs

PE = VLIW Core +

Tensor Coprocessor

© Kalray SA. - All Rights Reserved. 12

Vector-scalar ISA

• 64x 64-bit general-purpose registers

• SIMD operands can be single registers (64-bit),
register pairs (128-bit) or register quadruples (256-bit)

• 128-bit SIMD instructions by dual-issuing 64-bit on the
two ALUS or by using the 128-bit FPU datapath

• FPU capable of 4x FP32 FDP2A operations / cycle

The FDP2A operator computes 𝑎 ± 𝑏 × 𝑐 ± 𝑑 × 𝑒

• 256-bit load/store unit with byte masking

DSP capabilities

• Counted or while hardware loops with early exits

• Non-temporal loads (L1 cache bypass / preload)

CPU capabilities

• 4 privilege levels (rings), MMU (runs Linux kernel)

• Recursive ISA virtualization (Popek & Goldberg)

MPPA3 COOLIDGE V2 64-BIT KV3 CORE

VLIW architecture co-designed for compilers to appear as an in-order superscalar core

VLIW CORE PIPELINE

© Kalray SA. - All Rights Reserved. 13

MOTIVATIONS FOR DIRECT CODE GENERATION FROM MLIR

Kalray MPPA kernels for AI inference toolchain are manually written

• C/C++ with GCC asm statements

• Assembler code with CPP macros

Software pipelining in C/C++ GCC and LLVM Kalray compilers achieved mixed results

• LLVM software pipeliner retargeting terminated after unrolling created multi basic block loops

• GCC software pipeliner improved with MVE and presented at the GNU Tools Cauldron 2024

• Both software pipeliners require single basic block counted loops and rely on Swing Modulo Scheduling

• Passing accurate memory dependence information from C/C++ is an unsolved problem

« A Multi-level Compiler Backend for Accelerated Micro-kernels Targeting RISC-V ISA Extensions »

• Architectural registers represented as MLIR types with register number attribute

• SIMD and stream instruction selection, loop unroll-and-jam, spill-free register allocation

• Implemented using the xDSL compiler framework

© Kalray SA. - All Rights Reserved. 14© Kalray SA. Confidential - All Rights Reserved. 14

1.Introduction and Motivation

2.Deterministic Scheduling

3.Instruction Scheduling

4.Modulo Scheduling

5.Work in Progress

6.Conclusions and Outlook

AGENDA

© Kalray SA. - All Rights Reserved. 15

PARALLEL MACHINE SCHEDULING

Deterministic scheduling of an operation set {Oi}1≤i≤n to execute on m identical processors

A valid schedule is a set of schedule dates {σi}1≤i≤n (for {Oi}1≤i≤n) that satisfies:

• Execution of Oi consumes pi units of time on an arbitrary processor

• For each operation Oi, ri ≤ σi (release date) and Ci = σi + pi ≤ di (deadline or due date)

• For each precedence constraint between Oi and Oj: σi + pi + li
j ≤ σj (dependence latency is pi + li

j)

Most parallel machine scheduling problems studied assume li
j = 0 (precedences, not dependences)

The α|β|γ scheduling problem notation:

• α environment: 1 (one processor), P2 (two processors), Pm (m processors), P (> 2 processors), …

• β assumptions: pi processing times, ri release dates, di due dates, prec(lij) precedence with time lag li
j, …

• γ objective: ̶ (feasibility), Cmax (max Ci : Ci = completion time Oi), Lmax (max Li : Li = lateness Oi = Ci – di), …

Most polynomial-time solvable scheduling problems assume pi = 1 (Unit Execution Time or UET)

Limit case of no resource constraints (unbounded number of parallel processors)

• Scheduling problem can be solved by a single-source longest path algorithm on the dependence graph

© Kalray SA. - All Rights Reserved. 16

PARALLEL MACHINE SCHEDULING COMPLEXITY

Polynomial Time NP Hard

© Kalray SA. - All Rights Reserved. 17

PARALLEL MACHINE SCHEDULING EXTENSIONS

Extensions of the resource constraints to model real-world digital processors

Multiprocessor tasks (denoted sizei in the β field):

• Executing operation Oi require sizei processors for pi units of time

• Polynomial time: ,

• NP hard:

Typed tasks (denoted Σk in the α field):

• Processors are partitioned into k types and each operation Oi may only execute on processor of type τi

• Polynomial time: ,

• NP hard: ,

Cumulative resource constraints (generalize typed tasks and multiprocessor tasks):

• Processors are replaced by a set of resources, whose availabilities are given by an integral vector B.

• Each operation Oi is also associated with an integral vector bi of resource requirements

• The sum of bj for all operations Oj executing at a given time does not exceed B

© Kalray SA. - All Rights Reserved. 18

LIST SCHEDULING ALGORITHMS

Greedy scheduling of operations driven by their position in a pre-built priority list

Scheduling with resource constraints always succeeds if the dependence graph is acyclic

Graham List Scheduling (cycle scheduling in compilers)

• Scheduling is performed by scanning the time slots in increasing order

• For each time slot, if a processor is idle, schedule the highest priority operation available

• Performance bounds: [Munier 1998], [Chou 1992]

Job-Based List Scheduling (operation scheduling in compilers)

• Scheduling is performed by scanning the priority list in decreasing order

• For each operation of the list, schedule it at the earliest time slot available

• May deadlock if the priority list is not a topological order of the dependences

List scheduling priority functions

• Critical path: longest path in the dependence graph from operation to end of execution

• Deadlines: earliest di (Jackson’s rule), earliest di’ (di modified with ‘backward scheduling’)

© Kalray SA. - All Rights Reserved. 19

Precedence graph with dummy operation O0

Graham List Scheduling (cycle scheduling)

Non-Delay Schedule:

• No execution resources are left idle if there is
an operation that could start executing

• May exclude Cmax or Lmax optimal schedules in
case of non UET operations

Critical path list scheduling priority

Job-Based List Scheduling (operation scheduling)

Active Schedule:

• No operation can be completed earlier without
changing some execution sequence

• Includes Non-Delay schedules and some of the
optimal Cmax or Lmax schedules

LIST SCHEDULING EXAMPLES

Typed tasks with two processors, one of each type

© Kalray SA. - All Rights Reserved. 20

SCHEDULING ALGORITHM COMPONENTS

MinDist(Oi, Oj): minimum number of cycles (possibly negative) by which Oi must precede Oj in any schedule

• O(V3) with Floyd-Warshall, where V is the number of nodes (operations) in the dependence graph

EStart(Oi) = MinDist(Source, Oi)

• O(V * E) with Bellman-Ford, where E is the number or arcs in the dependence graph

LStart(Oi) = LStart(Sink) – MinDist(Oi, Sink) with LStart(Sink) ≥ Estart(Sink)

• O(V * E) with Bellman-Ford on the reverse dependence graph once LStart(Sink) is chosen

Slack(Oi) = LStart(Oi) – Estart(Oi)

Updating EStart(Oj) and LStart(Oj) after Oi is scheduled at date τi

• EStart(Oj) = max (EStart(Oj), τi + MinDist(Oi, Oj))

• LStart(Oj) = min (LStart(Oj), τi - MinDist(Oi, Oj))

© Kalray SA. - All Rights Reserved. 21© Kalray SA. Confidential - All Rights Reserved. 21

1.Introduction and Motivation

2.Deterministic Scheduling

3.Instruction Scheduling

4.Modulo Scheduling

5.Work in Progress

6.Conclusions and Outlook

AGENDA

© Kalray SA. - All Rights Reserved. 22

FROM MACHINE SCHEDULING TO INSTRUCTION SCHEDULING

Dependence graphs

• Dependence latency no longer related to processing times: 0 for WAR, 1 for WAW on registers

• Scheduling before register allocation (‘prepass’) does not see spill code, register moves and most
dependences related to register WAR / WAW

• Scheduling after register allocation (‘postpass’) is constrained by the register WAR / WAW dependences

• Dependence cost for memory loads instructions must statically assume whether L1 or L2 cache hits

Scheduling objectives

• Scheduling beyond basic blocks: chain or tree of basic blocks entered at the top basic block

• Scheduling inner loops: software pipelining optimizes for minimum period (initiation interval)

• In prepass instruction scheduling, delay ‘floaters’ instructions to decrease register pressure

• On microarchitectures with ‘macro-op fusion’, schedule the macro-ops in sequence

Resource constraints

• Issue slots, execution units, register file accesses

© Kalray SA. - All Rights Reserved. 23

VLIW INSTRUCTION SCHEDULING AS DETERMINISTIC SCHEDULING

ST/HP ST2OO VLIW core, implements the Lx architecture [Faraboschi et al. ISCA 2000]

Source code and machine code

• Before register allocation

• Minimize makespan (Cmax)

Dependence graph

• Acyclic (basic block scheduling)

• With zero latency arcs (lij ≥ –pi)

• Dummy source O0 and sink O8

Resource constraints

• Unit execution time (UET)

• Cumulative resources

© Kalray SA. - All Rights Reserved. 24

Bipartite graph of operations and issue slots

on the Trimedia [Hoogerbrugge 1999]

Operations with alternative reservation tables

Represented as AND-OR tree [Gyllenhaal 1998]

INSTRUCTION SCHEDULING RESOURCE MODELS

Cumulative resource model may not model accurately the target microarchitecture

© Kalray SA. - All Rights Reserved. 25

RESOURCE CONSTRAINTS WITH FINITE-STATE AUTOMATA

Finite-state automaton (FSA) transitions rather than reservation tables [Bala & Rubin 1995]

FSA approach supported in GCC and LLVM (resource regular expressions / itineraries)

Directly applicable to ‘cycle scheduling’, and in principle to ‘operation scheduling’
(cumbersome in practice, see operation scheduling [Hagog & Zaks 2004] in GCC)

Predecessors of advancing states (grey)
cannot accept more instructions, meaning
that the clock cycle must increase

Basic interface (GCC):

• int state_size(void);

• void state_reset(state_t);

• int state_transition(state_t, insn *);

The return value of state_transition() is the
minimum delay in cycles to issue insn, if ≤ 0
insn can issue at current clock cycle

© Kalray SA. - All Rights Reserved. 26

REGISTER ALLOCATION CONSTRAINTS

Maximum register pressure

• Number or registers live at a given program point or schedule date

• Prepass instruction scheduling tries to reduce register pressure, or a proxy such as register lifetimes

• In SSA form and without register class aliasing, can allocate with the MaxReg number of registers

Register class alisasing (including register tuples)

• « Aliased Register Allocation for Straight-line Programs is NP-Complete » [Lee et al. 2007]

• « A Generalized Algorithm for Graph-Coloring Register Allocation » [Smith et al. 2004]

© Kalray SA. - All Rights Reserved. 27© Kalray SA. Confidential - All Rights Reserved. 27

1.Introduction and Motivation

2.Deterministic Scheduling

3.Instruction Scheduling

4.Modulo Scheduling

5.Work in Progress

6.Conclusions and Outlook

AGENDA

© Kalray SA. - All Rights Reserved. 28

CYCLIC SCHEDULING WITH UNIFORM DEPENDENCES

Repetitive execution of an operation set {Oi}1≤i≤n with the objective of maximizing throughput

• Dependence arcs are bi-valued
(latency, omega) with constant values

• Omega values are the dependence
iteration distances between source
and destination operations

• Dominant cyclic schedules are K-
periodic: they repeat a schedule of K
instances of {Oi}1≤i≤n every λ cycles

• Modulo scheduling techniques focus
on 1-periodic cyclic schedules with
pruning of the register WAR/ WAW
dependences on temporary variables

© Kalray SA. - All Rights Reserved. 29

CYCLIC SCHEDULING TECHNIQUES

Non-preemptive resource-constrained scheduling with uniform dependences

• Cyclic scheduling on parallel processors [Hanen & Munier 1994]

• Unroll and compact to find K-periodic schedules [Bodin & Charot 1990, Aiken et al. 1996]
(requires a span-limiting constraint in order to converge)

• Optimal K-periodic scheduling [Feautrier 1994, Fimmel & Müller 2000]

• Classic modulo scheduling [Rau 1981, Touzeau 1984, Lam 1988]

• Decomposed modulo scheduling [Gasperoni & Schwiegelshohn 1991, Wang & Eisenbeis
1994], Insertion Scheduling [Dinechin 1995]

• Optimal modulo scheduling using time-indexed integer linear programming formulations
[Govindarajan et al. 1994, Eichenberger et al. 1995, Dinechin 2003]

• Converging to periodic schedules for cyclic scheduling problems with resources and
deadlines [Dinechin & Munier-Kordon 2014]

© Kalray SA. - All Rights Reserved. 30

CLASSIC MODULO SCHEDULING FRAMEWORK

Compute lower bounds on the period λ (called II): ResMII from resources, RecMII from dependence circuits

Thanks 1-periodic cyclic scheduling with period λ, the bi-valued dependence arcs become single-valued:

• Arc O3 → O2 with values (latency=1, omega=2) now has a possibly negative value (length = 1 - 2λ)

Schedule {Oi}1≤i≤n under modulo resource constraints: any resource busy at cycle t is also busy at cycle t+kλ

• Illustrated here with UET operations {O1, O2, O3}, two resources MUL, ADD, and λ = 3 clock cycles

Construct the software pipeline code including prologue, (unrolled) kernel, epilogues

Fixups for the pruned register WAR/WAW dependences: regmoves or modulo variable expansion (MVE)

© Kalray SA. - All Rights Reserved. 31

MODULO SCHEDULING IN PRODUCTION COMPILERS (1)

« A Fortran Compiler for the FPS-164 Scientific Computer » [Touzeau 1984]

• Cycle scheduling with earliest deadline first priority and simultanesous register allocation

• When the scheduler cannot register allocate a candidate, it inserts spill code and resumes scheduling

• Optimizes uniform loop-carried memory dependences into register moves (e.g. x[i] = a*x[i-2] + y[i])

« Compiling for the Cydra 5» [Dehnert & Towle 1993]

• Operation scheduling with backtracking: de-schedules resource or dependence conflicting operations

• Priority is lowest Slack first, increased if operation belongs to an inner recurrence circuit

• Register allocation after scheduling, reschedule after spill code insertion

« Lifetime-Sensitive Modulo Scheduling » [Huff 1993]

• Operation scheduling with backtracking whose Slack priority is corrected by the criticality of resources

• Scheduling by increasing from EStart or decreading from LStart depending on lifetime stretching effects

• Compute RecMII in O(V E log V) time by finding a circuit with the minimum cost-to-time ratio, where a
dependence arc is viewed as having a “cost” of -latency, and a “time” of omega

© Kalray SA. - All Rights Reserved. 32

MODULO SCHEDULING IN PRODUCTION COMPILERS (2)

« Software Pipelining Showdown: Optimal vs. Heuristic Methods … » [Ruttenberg et al. 1996]

• Operation scheduling with linear backtracking, driven by the order in a priority list

• When scheduling Oi fails, backtrack to ‘catch point’ Oj in the prioriy list to and reschedule Oj at other cycle

• Four different priority list are tried before incrementing the II, as none of them dominates the others

• Chaitin-Briggs register coloring on the constructed software pipeline, if fail insert spill code and try again

• Code quality almost identical to optimal modulo scheduling by solving integer programming formulation

« Swing Modulo Scheduling: A Lifetime-Sensitive Approach » [Llosa et al. 1996]

• Introduces Swing Modulo Scheduling (SMS), an operation scheduling algorithm without backtracking

• Two-level algorithm to build operation ordering: order the recurrence sets, then order within each set

• Aim to minimize the loop variables lifetime by scheduling operations either from EStart or from LStart

• SMS is implemented in GCC and LLVM, but restricted to single basic block counted loops

• [Llosa et al. 2001] “It is a heuristic technique that has a low computational cost while producing schedules
very close to those generated by optimal approaches based on exhaustive search” [?]

© Kalray SA. - All Rights Reserved. 33

MODULO SCHEDULING IN PRODUCTION COMPILERS (3)

ST200 production compiler on sample loop finds modulo schedule at  = 2 clock cycles

© Kalray SA. - All Rights Reserved. 34© Kalray SA. Confidential - All Rights Reserved. 34

1.Introduction and Motivation

2.Deterministic Scheduling

3.Instruction Scheduling

4.Modulo Scheduling

5.Work in Progress

6.Conclusions and Outlook

AGENDA

© Kalray SA. - All Rights Reserved. 35

GCC MODULO SCHEDULING FOR THE KALRAY VLIW CORE

Kalral VLIW core features:

• MADD (int.), FMA (f.p.), CMOVE instructions have 4 operands encoded with 3 registers specifiers

• Load opcodes have a modifier to enable bypassing L1 cache, exposing the L2 cache latency

• SIMD instructions operate on 64-bit register pairs (128 bits) or quadruples (256 bits)

GCC modulo scheduling [Hagog & Zaks 2004]:

• Only applies to single basic block counted loops, that must be mapped to hardware loops (‘do loop’)

• Modulo scheduling in prepass, disables re-scheduling of software pipeline code in postpass

• Implements Swing Modulo Scheduling (SMS) without modulo variable expansion (MVE)

• Generate register moves to split live ranges > II and try to insert them in the modulo schedule

• GCC does not preserve accurate memory dependences, e.g. vectorization discards #pragma gcc ivdep

Improvements to GCC SMS [GNU Tools Cauldron 2024]:

• Implement MVE and presolve the register naming constraints by inserting regmoves before scheduling

© Kalray SA. - All Rights Reserved. 36

MODULO VARIABLE EXPANSION VS REGISTER MOVES

Explicit register moves (regmoves) are not
the same as classic MVE [Lam 1988]:

• With register moves, there is no need
for kernel unrolling and multiple
epilogs

• Moving the destination register of a
long latency operation stalls in-order
microarchitectures

• Illustrated by executing PolyBench on
the Kalray VLIW core with array loads
bypassing the L1 cache

• Code compiled with GCC and its
improved SMS, with MVE (mve2)
instread of regmoves (regm2)

© Kalray SA. - All Rights Reserved. 37

PRESOLVING THE REGISTER NAMING CONSTRAINTS

Register naming constraints come from ISA [and from calling conventions]

Solved by GCC local register allocation (LRA) by splitting then coalescing live ranges

Try to prevent LRA from inserting register copies after SMS, by iterating:

• Run the SMS scheduler on the DDG extended with constraint moves

• Coalesce the constraint moves if non-interfering and the resulting lifetime ≤ II

© Kalray SA. - All Rights Reserved. 38

ANOTHER APPROACH TO MODULO SCHEDULING

Motivated by issues with GCC [LLVM] modulo scheduling approaches

• Require single basic block loops, however if-conversion occurs after modulo scheduling

• Require that the loop be counted, thus excluding all while loops

• Require that the target ISA provides counted hardware loops

• Provides no visibility on register moves or spill code that may be later inserted by register allocation

• The [acyclic] postpass scheduler is unaware of the loop-carried dependence and resource dangles

Proposed approach: ‘convergent modulo scheduling’ (CMS) on register-allocated machine code

• Software pipelining of superblock counted and while loops after register allocation and if-conversion

• Deallocation of registers at the granularity of live ranges then reallocation and possibly MVE

• Modulo scheduling while allowing control speculation of side-effect free operations, including loads

• Better non-backtracking modulo scheduling engine than SMS, by not managing register lifetimes

• Currently prototyped in GCC

© Kalray SA. - All Rights Reserved. 39

CONVERGING TO 1-PERIODIC SCHEDULES

Applies to cyclic scheduling problems with resources, uniform precedences, release dates & deadlines

[Dinechin & Munier-Kordon 2014] heuristic or optimal acyclic scheduling algorithm can be used to build
1-periodic cyclic schedules → direct application to modulo scheduling

• Assume a value of the period λ, unwind the cyclic scheduling problem {Oi}1≤i≤n 𝑢 times

• Regularize the unwinded scheduling problem {Oi
j}1≤i≤n

1≤j≤u by adding a dependence arc of latency λ
between any two successive instances Oi

k, Oi
k+1 of Oi for all 1≤i≤n

• Try acyclic scheduling of the regularized unwinded scheduling problem, if it succeeds any two
successive instances of an operation Oi

k, Oi
k+1 are scheduled no less than λ cycles apart

• Eventually, this schedule becomes λ-stationary for  iterations, and this yields a 1-periodic
schedule at period λ

• [Dinechin & Munier-Kordon 2014] provide two lower bounds for Δ to satisfy respectively the uniform
precedence relations and the resource constraints of the modulo schedule

© Kalray SA. - All Rights Reserved. 40

COMPARING THE CMS TO SMS IMPLEMENTATIONS IN GCC

CMS implemented in GCC for
the Kalray VLIW core:

• Use a cycle scheduler, with
operation Height as priority

• Cycle scheduling enables a
straigtforward use of the
resource FSA (called DFA)

• Implementation emulates the
unbounded unwiding of the
loop body with only two
instances of its operations

• Even with the simple Height
priority, CMS finds lower II
than SMS in GCC

• [Codina et al. 2002] compare
SMS to Iterative Modulo
Scheduling, Slack
Scheduling, Integrated
Register-Sensitive Iterative
Software pipelining (IRIS)

© Kalray SA. - All Rights Reserved. 41

CMS ON REGISTER ALLOCATED MACHINE CODE IN GCC (1)

Manual vectorization of SAXPY with GCC/LLVM vector type extensions

Inner loop code after register allocation

} 128-bit loads to register pairs

} FMA lowered to 64-bit operations

© Kalray SA. - All Rights Reserved. 42

CMS ON REGISTER ALLOCATED MACHINE CODE IN GCC (2)

Inner loop code after register allocation

Register live ranges

} FFMA register naming constraints

© Kalray SA. - All Rights Reserved. 43

PIECES OF TARGET-SPECIFIC DESCRIPTION

Standard pattern name for FMA operating on 2x FP32 vectors (V2SF)

Further machine code lowering done after register allocation

← FMA operand 3 must use

same register as operand 0

← FMA on vectors of 4x FP32

← FMA on vectors of 2x FP32 at

offset 0 bytes in 128-bit register

← FMA on vectors of 2x FP32 at

offset 8 bytes in 128-bit register

© Kalray SA. - All Rights Reserved. 44© Kalray SA. Confidential - All Rights Reserved. 44

1.Introduction and Motivation

2.Deterministic Scheduling

3.Instruction Scheduling

4.Modulo Scheduling

5.Work in Progress

6.Conclusions and Outlook

AGENDA

© Kalray SA. - All Rights Reserved. 45

DIRECTIONS FOR KERNEL CODE SOFTWARE PIPELINING

Issues with kernel code generation through C/C++ compiler

• Restricted applicability of sofware pipelining

• Conservative memory dependence information

• Register allocator challenged by register class aliasing

MLIR lowering to register allocated machine code

• Vectorization and instruction selection

• Simple hierarchical register allocation

• Expansion of operations on register tuples

• If-conversion in case of conditional execution

CMS on register allocated machine code

• Register lifetimes to ensure naming constraints (ISA, sub-registers and conditional execution)

• Using cycle scheduling enables direct reuse of DFA approach to scheduled resource management

© Kalray SA. - All Rights Reserved. 46

REGISTER PRESSURE WHILE MODULO SCHEDULING

Example of SAXPY loop scheduled at  = 3 clock cycles

ld x ld x’ ld y ld x” ld y’ ld y” st s st s’

a*x a*x’ p+y a*x” p+y’ p+y”

ld 3 cycles

+,* 4 cycles

a

x

y

p

s

x

y

p

s

x

y

© Kalray SA. - All Rights Reserved. 47

www.kalrayinc.com

THANK YOU

	Slide 1: Software Pipelining for Kernel Code Generation
	Slide 2: AGENDA
	Slide 3: Software Pipelining Motivation
	Slide 4: Software Pipelining Example on ARM A53
	Slide 5: Software Pipelining Using Modulo SCheduling
	Slide 6: Software Pipeline Construction from Kernel
	Slide 7: Successful VLIW Accelerators
	Slide 8: VLIW Architecture Principles
	Slide 9: Multiflow TRACE 7 Series
	Slide 10: Itanium Architecture (IA64)
	Slide 11: KALRAY MPPA® Scalable MANY-CORE Accelerators
	Slide 12: MPPA3 Coolidge v2 64-Bit KV3 Core
	Slide 13: Motivations for Direct Code Generation from MLIR
	Slide 14: AGENDA
	Slide 15: Parallel Machine Scheduling
	Slide 16: Parallel Machine Scheduling Complexity
	Slide 17: Parallel Machine Scheduling Extensions
	Slide 18: List Scheduling Algorithms
	Slide 19: List Scheduling ExampleS
	Slide 20: Scheduling Algorithm Components
	Slide 21: AGENDA
	Slide 22: From Machine Scheduling to Instruction Scheduling
	Slide 23: VLIW InstrUction Scheduling as Deterministic SCheduling
	Slide 24: Instruction Scheduling Resource Models
	Slide 25: Resource Constraints With FinIte-State Automata
	Slide 26: Register Allocation Constraints
	Slide 27: AGENDA
	Slide 28: Cyclic Scheduling with Uniform Dependences
	Slide 29: Cyclic Scheduling Techniques
	Slide 30: Classic Modulo Scheduling Framework
	Slide 31: Modulo Scheduling in Production Compilers (1)
	Slide 32: Modulo Scheduling in Production Compilers (2)
	Slide 33: Modulo Scheduling in Production Compilers (3)
	Slide 34: AGENDA
	Slide 35: GCC Modulo Scheduling for the Kalray VLIW Core
	Slide 36: Modulo Variable Expansion vs Register Moves
	Slide 37: Presolving the register naming constraints
	Slide 38: Another Approach to Modulo Scheduling
	Slide 39: Converging to 1-periodic schedules
	Slide 40: Comparing the CMS to SMS Implementations in GCC
	Slide 41: CMS on Register Allocated Machine Code in GCC (1)
	Slide 42: CMS on Register Allocated Machine Code in GCC (2)
	Slide 43: Pieces of Target-Specific Description
	Slide 44: AGENDA
	Slide 45: Directions for Kernel Code Software Pipelining
	Slide 46: Register Pressure While Modulo Scheduling
	Slide 47

