
Mehdi Amini - NVIDIA
Cambridge “summer” School - 9/8/2025

Building
Compilers
With
MLIR

An intro

Agenda

- What’s a compiler?
- What’s MLIR and why?
- Core MLIR concepts
- MLIR in practice:

- Play with the C++ API: Traverse the IR, print what we can.
- Write a pass:

- Understand the scheduling
- Mutate the IR
- Debugging
- Diagnostics and remarks

Start by cloning: https://github.com/joker-eph/playing-with-mlir

git clone git@github.com:joker-eph/playing-with-mlir.git

Pull the container:

docker pull jokereph/mlir-tutorial:debug

https://github.com/joker-eph/playing-with-mlir
mailto:git@github.com

Large number of public talks

LLVM Dev Meeting 2020:
MLIR Tutorial [Video] [Slides]

Lot more content, 89 technical talks from our public meetings:
https://mlir.llvm.org/talks/

Very active community: 25 out of 54 talks about MLIR at EuroLLVM 2023!
https://www.youtube.com/@LLVMPROJ/search?query=MLIR

https://mlir.llvm.org/docs/Tutorials/Toy/
https://youtu.be/Y4SvqTtOIDk
https://llvm.org/devmtg/2020-09/slides/MLIR_Tutorial.pdf
https://mlir.llvm.org/talks/
https://www.youtube.com/@LLVMPROJ/search?query=MLIR

What’s a compiler anyway?

CompilerProgram Program’

● Just another software which takes some “data” in and
produces “data” out.
Turns out the “data” is itself a program, which makes the compiler
“meta” somehow

● “Pure”: (compilers a often written in functional languages)

○ No I/O, easy to keep stateless

○ Deterministic

○ Sequential (in general): no race bugs

○ Easy to test => Compilers are easy!

Why a compiler

CompilerProgram Program’

Program’ is “similar” to the original Program, what changed?

● Program may be textual representation and Program’ executable?
(but this is the case for an “assembler” as well, is the “assembler” a compiler?)

● Program’ may be source in another language? (Python-to-C++?)
● Program’ may be “faster”?
● Program’ may be “instrumented”?
● Program’ may be using an accelerator?
● …

What’s a program?
According to ChatGPT:

A program, in the context of computing, is a set of
instructions that a computer can execute to perform a
specific task or function. It consists of a sequence of
commands or statements written in a
programming language, which the computer's
processor can understand and execute.

What’s a program?
According to ChatGPT:

A program, in the context of computing, is a set of
instructions that a computer can execute to perform a
specific task or function. It consists of a sequence of
commands or statements written in a
programming language, which the computer's
processor can understand and execute.

What’s a program?
According to ChatGPT:

A program, in the context of computing, is a set of
instructions that a computer can execute to perform a
specific task or function. It consists of a sequence of
commands or statements written in a
programming language, which the computer's
processor can understand and execute.

According to ChatGPT:

A program, in the context of computing, is a set of
instructions that a computer can execute to perform a
specific task or function. It consists of a sequence of
commands or statements written in a
programming language, which the computer's
processor can understand and execute.

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

IR Emitter

Stream of Tokens

Abstract Syntax Tree

Abstract Syntax Tree

Intermediate
Representation (IR)

What’s a program?

Optimizer

Code Generation
(Virtual) ISA (or Bytecode)

Optimized IR

According to ChatGPT:

A program, in the context of computing, is a set of
instructions that a computer can execute to perform a
specific task or function. It consists of a sequence of
commands or statements written in a
programming language, which the computer's
processor can understand and execute.

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

IR Emitter

Stream of Tokens

Abstract Syntax Tree

Abstract Syntax Tree

Intermediate
Representation (IR)

What’s a program?

Optimizer

Code Generation
(Virtual) ISA (or Bytecode)

Optimized IR

Different representations
of the same program!

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

IR Emitter

Stream of Tokens

Abstract Syntax Tree

Abstract Syntax Tree

Intermediate
Representation (IR)

Optimizer

Code Generation
(Virtual) ISA (or Bytecode)

Optimized IR

Frontend of the compiler
Main role: from text to a structured representation.

- Grammar
- Type system
- Diagnostics

Operates on “AST”: faithful structure, not easy to
transform!

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

IR Emitter

Stream of Tokens

Abstract Syntax Tree

Abstract Syntax Tree

Intermediate
Representation (IR)

Optimizer

Code Generation
(Virtual) ISA (or Bytecode)

Optimized IR

Frontend of the compiler
Main role: from text to a structured representation.

- Grammar
- Type system
- Diagnostics

Operates on “AST”: faithful structure, not easy to
transform!

clang -Xclang -ast-dump

https://godbolt.org/z/1br84hxdK

https://godbolt.org/z/1br84hxdK

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

IR Emitter

Stream of Tokens

Abstract Syntax Tree

Abstract Syntax Tree

Intermediate
Representation (IR)

Optimizer

Code Generation
(Virtual) ISA (or Bytecode)

Optimized IR

Frontend of the compiler
Main role: from text to a structured representation.

- Grammar
- Type system
- Diagnostics

Operates on “AST”: faithful structure, not easy to
transform!

“Middle-end” of the compiler
Transform the program, usually to “optimize”
Operates on IR: designed for analysis and
transformations, does not contains “source”
information like the AST.

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

IR Emitter

Stream of Tokens

Abstract Syntax Tree

Abstract Syntax Tree

Intermediate
Representation (IR)

Optimizer

Code Generation
(Virtual) ISA (or Bytecode)

Optimized IR

“Middle-end” of the compiler
Transform the program, usually to “optimize”
Operates on IR: designed for analysis and
transformations, does not contains “source”
information like the AST.

clang -emit-llvm -S -o -

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

IR Emitter

Stream of Tokens

Abstract Syntax Tree

Abstract Syntax Tree

Intermediate
Representation (IR)

Optimizer

Code Generation
(Virtual) ISA (or Bytecode)

Optimized IR

Frontend of the compiler
Main role: from text to a structured representation.

- Grammar
- Type system
- Diagnostics

Operates on “AST”: faithful structure, not easy to
transform!

“Middle-end” of the compiler
Transform the program, usually to “optimize”
Operates on IR: designed for analysis and
transformations, does not contains “source”
information like the AST.

“Backend” of the compiler
From IR to “ISA”: select the available instruction on
the target.

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

IR Emitter

Stream of Tokens

Abstract Syntax Tree

Abstract Syntax Tree

Intermediate
Representation (IR)

Optimizer

Code Generation
(Virtual) ISA (or Bytecode)

Optimized IR

Frontend of the compiler
Main role: from text to a structured representation.

- Grammar
- Type system
- Diagnostics

Operates on “AST”: faithful structure, not easy to
transform!

“Middle-end” of the compiler
Transform the program, usually to “optimize”
Operates on IR: designed for analysis and
transformations, does not contains “source”
information like the AST.

“Backend” of the compiler
From IR to “ISA”: select the available instruction on
the target.

Modern languages pervasively invest in high level IRs

LLVM IR ...

Swift SIL IRSwift AST

Rust MIR IRRust AST

Julia Julia IRJulia AST

● Language specific optimizations
● Dataflow driven type checking - e.g. definitive initialization, borrow checker
● Progressive lowering from high level abstractions

Clang AST
C, C++, ObjC,

CUDA, OpenCL, ... CIR IR

Fortran FIR IRFlang AST

https://llvm.org/devmtg/2015-10/#talk7
https://blog.rust-lang.org/2016/04/19/MIR.html
https://docs.julialang.org/en/v1/devdocs/ssair/index.html
http://llvm.org/devmtg/2019-10/talk-abstracts.html#tech19

High-Level Intermediate
Representation (IR)

High-Level Optimizer
Optimized HLIR

Progressive “lowering” of the
abstraction level: different kind of
optimizations at each level.

Lowering
Middle-level IR

Mid-Level Optimizer
Optimized Middle-level IR

Lowering
Low-level IR

Low-Level Optimizer
Optimized Low-level IR

Lowering

Compiler Stack

To some extent, each level is the
“backend” for the previous level,
and the “frontend” for the next level.

The program represented with the IR goes through a “pipeline” of passes (e.g.
“loop unrolling”, “common subexpressions elimination”, “dead-store elimination”, “inlining”, …)

Compiler Passes

Optimizer

IR
Pass 1

IR
Pass 2

IR
Pass 3

IR
Pass 4

IR

Analysis Analysis Analysis

Natural granularity for testing!

 clang -emit-llvm -O3 -mllvm -print-pipeline-passesCompiler Passes:
annotation2metadata,forceattrs,declare-to-assign,inferattrs,coro-early,function<eager-inv>(lower-expect,simp
lifycfg<bonus-inst-threshold=1;no-forward-switch-cond;no-switch-range-to-icmp;no-switch-to-lookup;keep-loops
;no-hoist-common-insts;no-sink-common-insts;speculate-blocks;simplify-cond-branch>,sroa<modify-cfg>,early-cs
e<>,callsite-splitting),openmp-opt,ipsccp,called-value-propagation,globalopt,function<eager-inv>(mem2reg,ins
tcombine<max-iterations=1;no-use-loop-info;no-verify-fixpoint>,simplifycfg<bonus-inst-threshold=1;no-forward
-switch-cond;switch-range-to-icmp;no-switch-to-lookup;keep-loops;no-hoist-common-insts;no-sink-common-insts;
speculate-blocks;simplify-cond-branch>),always-inline,require<globals-aa>,function(invalidate<aa>),require<p
rofile-summary>,cgscc(devirt<4>(inline,function-attrs<skip-non-recursive-function-attrs>,argpromotion,openmp
-opt-cgscc,function<eager-inv;no-rerun>(sroa<modify-cfg>,early-cse<memssa>,speculative-execution<only-if-div
ergent-target>,jump-threading,correlated-propagation,simplifycfg<bonus-inst-threshold=1;no-forward-switch-co
nd;switch-range-to-icmp;no-switch-to-lookup;keep-loops;no-hoist-common-insts;no-sink-common-insts;speculate-
blocks;simplify-cond-branch>,instcombine<max-iterations=1;no-use-loop-info;no-verify-fixpoint>,aggressive-in
stcombine,libcalls-shrinkwrap,tailcallelim,simplifycfg<bonus-inst-threshold=1;no-forward-switch-cond;switch-
range-to-icmp;no-switch-to-lookup;keep-loops;no-hoist-common-insts;no-sink-common-insts;speculate-blocks;sim
plify-cond-branch>,reassociate,constraint-elimination,loop-mssa(loop-instsimplify,loop-simplifycfg,licm<no-a
llowspeculation>,loop-rotate<header-duplication;no-prepare-for-lto>,licm<allowspeculation>,simple-loop-unswi
tch<nontrivial;trivial>),simplifycfg<bonus-inst-threshold=1;no-forward-switch-cond;switch-range-to-icmp;no-s
witch-to-lookup;keep-loops;no-hoist-common-insts;no-sink-common-insts;speculate-blocks;simplify-cond-branch>
,instcombine<max-iterations=1;no-use-loop-info;no-verify-fixpoint>,loop(loop-idiom,indvars,loop-deletion,loo
p-unroll-full),sroa<modify-cfg>,vector-combine,mldst-motion<no-split-footer-bb>,gvn<>,sccp,bdce,instcombine<
max-iterations=1;no-use-loop-info;no-verify-fixpoint>,jump-threading,correlated-propagation,adce,memcpyopt,d
se,move-auto-init,loop-mssa(licm<allowspeculation>),coro-elide,simplifycfg<bonus-inst-threshold=1;no-forward
-switch-cond;switch-range-to-icmp;no-switch-to-lookup;keep-loops;hoist-common-insts;sink-common-insts;specul
ate-blocks;simplify-cond-branch>,instcombine<max-iterations=1;no-use-loop-info;no-verify-fixpoint>),function
-attrs,function(require<should-not-run-function-passes>),coro-split)),deadargelim,coro-cleanup,globalopt,glo
baldce,elim-avail-extern,rpo-function-attrs,recompute-globalsaa,function<eager-inv>(float2int,lower-constant
-intrinsics,chr,loop(loop-rotate<header-duplication;no-prepare-for-lto>,loop-deletion),loop-distribute,injec
t-tli-mappings,loop-vectorize<no-interleave-forced-only;no-vectorize-forced-only;>,infer-alignment,loop-load
-elim,instcombine<max-iterations=1;no-use-loop-info;no-verify-fixpoint>,simplifycfg<bonus-inst-threshold=1;f
orward-switch-cond;switch-range-to-icmp;switch-to-lookup;no-keep-loops;hoist-common-insts;sink-common-insts;
speculate-blocks;simplify-cond-branch>,slp-vectorizer,vector-combine,instcombine<max-iterations=1;no-use-loo
p-info;no-verify-fixpoint>,loop-unroll<O3>,transform-warning,sroa<preserve-cfg>,infer-alignment,instcombine<
max-iterations=1;no-use-loop-info;no-verify-fixpoint>,loop-mssa(licm<allowspeculation>),alignment-from-assum
ptions,loop-sink,instsimplify,div-rem-pairs,tailcallelim,simplifycfg<bonus-inst-threshold=1;no-forward-switc
h-cond;switch-range-to-icmp;no-switch-to-lookup;keep-loops;no-hoist-common-insts;no-sink-common-insts;specul
ate-blocks;simplify-cond-branch>),globaldce,constmerge,cg-profile,rel-lookup-table-converter,function(annota
tion-remarks),print
Compiler returned: 0

OK, Compiler looks cool, but what’s MLIR?

Not a compiler, and definitely nothing to do with “ML”.

● Framework to build a compiler IR: define your type system, operations, etc.

● Toolbox covering your compiler infrastructure needs
○ Diagnostics, pass-management infrastructure, multi-threading, testing tools, etc.

● Batteries-included:
○ Various code-generation components / lowering strategies
○ Tooling for accelerator support (GPUs)

● Allow different levels of abstraction to freely co-exist
○ Abstractions can better target specific areas with less high-level information lost
○ Progressive lowering simplifies and enhances transformation pipelines
○ No arbitrary boundary of abstraction, e.g. host and device code in the same IR at the same time

● LLVM-inspired

We “sell” a combination of:

● Time to market: minimize the time “from idea to prototype”, easier transition for “research to
production”

● Allow you to focus on your value-add (do you want to reimplement everything?)

● Flexibility: encourage modular design (dialect), allow you to adjust and re-iterate, resilient to
initial mistakes.

● Built for production from day-1: heavily optimized behind the scene.
-> minimize the effort to go “from prototype to a product”
Inspired by LLVM, fixing all the mistakes!

● Modular: “you pay for what you use” footprint
○ CoreIR & builtin dialect & printer/parser & bytecode: 2MB
○ + the pass infrastructure, instrumentation, etc.: 3MB (+1MB)
○ + canonicalize, pattern/rewrite infra, PDL compiler/interpreter: 4.8MB (+1.8MB)

● Standardize compiler infrastructure: don’t learn over and over the peculiarities of each
compiler infrastructure. Learn MLIR and you can more easily learn about any MLIR-based
compiler!
(Translates into: good skill to have on your resume for engineer, easier hiring for companies)

Underlying MLIR development

Core MLIR Concepts

MLIR
Principles In-memory

IR

Textual IR Bytecode

Roundtrip

- Testing
- Debugging

(call dump() on any MLIR entity)

- Deployment
- Versioning: forward/backward

compat

- Easy to manipulate, mapped to convenient APIs
- IR Invariants constraints auto-verified

IR Core Concepts

https://pfalcon.github.io/ssabook/latest/book.pdf

https://pfalcon.github.io/ssabook/latest/book.pdf

Very few core-defined aspects, MLIR is generic and favor extensibility:

- Region, either:
- a list of basic blocks chained through their terminators to form a CF
- a single block containing operations forming a generic directed graph (including cyclic).

- Block: a sequential list of Operations. They take arguments instead of using phi nodes.

- Operation: a generic single unit of “code”.
- takes individual Values as operands,
- produces one or more SSA Values as results.
- A terminator operation also has a list of successors blocks, as well as arguments matching the blocks.

IR Core Concepts

There aren’t any hard-coded structures or specific operations in MLIR:

even Module and Function are defined just as regular operations!

Wide range of applications: Dataflow Graphs, ML Compilers, HW Design, Parallel Optimization, Heterogeneous runtime,
Functional programming, Fortran Compiler, Heterogeneous code generation, Encryption, Program analysis, Zero knowledge
proof compilation, Quantum, Blockchain, …

Operations, Not Instructions

 %res:2 = "mydialect.morph"(%input#3)
 <cute.layout = ((2, 4), _), other.attribute = ENUM_VAL>
 { some.attribute = true, other.attribute = 1.5 }
 : (!mydialect.buf<dtype = f32, strides =[1, 2]>)
 -> (!mydialect.buf<dtype = f32, strides =[1, 2]>, !mydialect.buf<dtype = f32, strides =[1, 2]>)
 loc(callsite("foo" at "mysource.cc":10:8))

● No predefined set of instructions
● Operations are like “opaque functions” to MLIR

Name of the
SSA results

(mlir::Value)

Op Id
Number of

value returned
Dialect
prefix Argument

Index in
the producer’s results

Dialect prefix
for the type

Type
informations

List of properties:
Compile-time data associated

with an operation

Mandatory and
Rich Location

https://mlir.llvm.org/docs/LangRef/#operations
https://github.com/llvm/llvm-project/blob/main/mlir/include/mlir/IR/Operation.h#L31-L84

Discardable attributes dict:
extra unbounded data that can
be attached to any operation.

https://mlir.llvm.org/docs/LangRef/#operations
https://github.com/llvm/llvm-project/blob/main/mlir/include/mlir/IR/Operation.h#L31-L84

Hands-on: ir-traversal

Let’s work through the second hands on.

%results:2 = "d.operation"() ({

 // Regions belong to Ops and can have multiple blocks.

 ^block(%argument: !d.type):

 %value = "nested.operation"() ({

 // Ops can contain nested regions.

 "d.op"() : () -> ()

 }) : () -> (!d.other_type)

 "consume.value"(%value) : (!d.other_type) -> ()

 ^other_block:

 "d.terminator"() [^block(%arg0 : !d.type)] : () ->

()

}) : () -> (!d.type, !d.other_type)

● Regions are list of basic blocks nested inside of an operation.
○ Basic blocks are a list of operations: the IR structure is recursively nested!

● Conceptually similar to function call, but can reference SSA values defined outside.
● SSA values defined inside don’t escape.

Recursive nesting: Operations -> Regions -> Blocks
Region

Block

Region

https://mlir.llvm.org/docs/Tutorials/UnderstandingTheIRStructure/
https://mlir.llvm.org/docs/LangRef/#high-level-structure

https://mlir.llvm.org/docs/Tutorials/UnderstandingTheIRStructure/
https://mlir.llvm.org/docs/LangRef/#high-level-structure

Regions

func.func @hello(%arg0 : i32, %arg1 : i1) {
 …

 …
}

“CFG Regions”: sequential list of
operations, the control flows from one
operation to the next in order (similar to
LLVM)

Graph Regions

my.graph @hello(%arg0 : i32, %arg1 : i1) {
 …
 B_user(%b) : …
 …
 %b = B_producer(%c) : …
 …
 %c = C_producer(%b) : …
}

“Graph Regions”: single block with
unordered list of operations and
no terminator requirement.
Cycles in SSA def-use are also
allowed!

-> ML Dataflow Graphs
-> “Circuit level” logic
-> Synchronous domain
…

 scf.if (%arg1) {
 …
 } else {
 …
 }

Future Extension to Region: Multiple-Entry, Multiple-Exit MLIR Regions
EuroLLVM 2023: slides and recording

https://llvm.org/devmtg/2023-05/slides/QuickTalks-May10/01%20-Multiple-Exit%20MLIR%20Blocks-EuroLLVM%202023.pdf
https://www.youtube.com/watch?v=TM-97iiozDY

Hands-on: ir-traversal-with-regions

https://mlir.llvm.org/docs/LangRef/#dialects
https://github.com/llvm/llvm-project/blob/master/mlir/include/mlir/IR/Dialect.h#L37
https://mlir.llvm.org/docs/Tutorials/CreatingADialect/

Dialects: Defining Rules and Semantics for the IR
A MLIR dialect is a logical grouping including:

● A prefix (“namespace” reservation)

● A list of custom types, each its C++ class.

● A list of operations, each its name and C++ class implementation:

○ Verifier for operation invariants (e.g. toy.print must have a single operand)

○ Semantics (has-no-side-effects, constant-folding, CSE-allowed, ….)

● Passes: analysis, transformations, and dialect conversions.

● Possibly custom parser and assembly printer

Dialects co-exist: a program is often represent by a mix of dialects!

https://mlir.llvm.org/docs/LangRef/#dialects
https://github.com/llvm/llvm-project/blob/master/mlir/include/mlir/IR/Dialect.h#L37
https://mlir.llvm.org/docs/Tutorials/CreatingADialect/

%13 = llvm.alloca %arg0 x !llvm.double : (!llvm.i32) -> !llvm.ptr<double>

%14 = llvm.getelementptr %13[%arg0, %arg0]

 : (!llvm.ptr<double>, !llvm.i32, !llvm.i32) -> !llvm.ptr<double>

%15 = llvm.load %14 : !llvm.ptr<double>

llvm.store %15, %13 : !llvm.ptr<double>

%16 = llvm.bitcast %13 : !llvm.ptr<double> to !llvm.ptr<i64>

%17 = llvm.call @foo(%arg0) : (!llvm.i32) -> !llvm.struct<(i32, double, i32)>

%18 = llvm.extractvalue %17[0] : !llvm.struct<(i32, double, i32)>

%19 = llvm.insertvalue %18, %17[2] : !llvm.struct<(i32, double, i32)>

%20 = llvm.constant(@foo : (!llvm.i32) -> !llvm.struct<(i32, double, i32)>) :

 !llvm.ptr<func<struct<i32, double, i32> (i32)>>

%21 = llvm.call %20(%arg0) : (!llvm.i32) -> !llvm.struct<(i32, double, i32)>

LLVM as a dialect

More intro to MLIR: https://mlir.llvm.org/docs/Tutorials/Toy/

https://mlir.llvm.org/docs/Tutorials/Toy/

I love it: how do I start to write my dialect?
So you want to design an IR: it’s a bit of an art, but not very different from other
API design.

Start with the type system:

- what are the objects you want to model?
- Are you manipulating “arrays”? Scalars?
- Are they mutable?

Then the operations:

- Very dependent on the type modeling: if mutable, think about side-effects.
dot(%a, %b, %c) vs %c = dot(%a, %b)

- Control-flow: imperative programing model or dataflow graph?

https://mlir.llvm.org/docs/DefiningDialects/#defining-a-dialect

https://mlir.llvm.org/docs/DefiningDialects/#defining-a-dialect

ODS: Operation Definition Specification

https://mlir.llvm.org/docs/DefiningDialects/Operations/
https://mlir.llvm.org/docs/Dialects/ArithOps/#arithmulsi_extended-arithmulsiextendedop

https://mlir.llvm.org/docs/DefiningDialects/Operations/
https://mlir.llvm.org/docs/Dialects/ArithOps/#arithmulsi_extended-arithmulsiextendedop

ODS: Operation Definition Specification

https://mlir.llvm.org/docs/DefiningDialects/Operations/
https://mlir.llvm.org/docs/Dialects/ArithOps/#arithmulsi_extended-arithmulsiextendedop

https://mlir.llvm.org/docs/DefiningDialects/Operations/
https://mlir.llvm.org/docs/Dialects/ArithOps/#arithmulsi_extended-arithmulsiextendedop

The program represented with the IR goes through a “pipeline” of passes (e.g.
“loop unrolling”, “common subexpressions elimination”, “dead-store elimination”, “inlining”, …)

I have a dialect now, how do I test it?

IR
Pass 1

IR
Pass 2

IR
Pass 3

IR
Pass 4

IR

annotation2metadata,forceattrs,declare-to-assign,inferattrs,coro-early,function<eager-inv>(lower-expect,simplifycf
g<bonus-inst-threshold=1;no-forward-switch-cond;no-switch-range-to-icmp;no-switch-to-lookup;keep-loops;no-hoist-co
mmon-insts;no-sink-common-insts;speculate-blocks;simplify-cond-branch>,sroa<modify-cfg>,early-cse<>,callsite-split
ting),openmp-opt,ipsccp,called-value-propagation,globalopt,function<eager-inv>(mem2reg,instcombine<max-iterations=
1;no-use-loop-info;no-verify-fixpoint>,simplifycfg<bonus-inst-threshold=1;no-forward-switch-cond;switch-range-to-i
cmp;no-switch-to-lookup;keep-loops;no-hoist-common-insts;no-sink-common-insts;speculate-blocks;simplify-cond-branc
h>),always-inline,require<globals-aa>,function(invalidate<aa>),require<profile-summary>,cgscc(devirt<4>(inline,fun
ction-attrs<skip-non-recursive-function-attrs>,argpromotion,openmp-opt-cgscc,function<eager-inv;no-rerun>(sroa<mod
ify-cfg>,early-cse<memssa>,speculative-execution<only-if-divergent-target>,jump-threading,correlated-propagation,s
implifycfg<bonus-inst-threshold=1;no-forward-switch-cond;switch-range-to-icmp;no-switch-to-lookup;keep-loops;no-ho
ist-common-insts;no-sink-common-insts;speculate-blocks;simplify-cond-branch>,instcombine<max-iterations=1;no-use-l
oop-info;no-verify-fixpoint>,aggressive-instcombine,libcalls-shrinkwrap,tailcallelim,simplifycfg<bonus-inst-thresh
old=1;no-forward-switch-cond;switch-range-to-icmp;no-switch-to-lookup;keep-loops;no-hoist-common-insts;no-sink-com
mon-insts;speculate-blocks;simplify-cond-branch>,reassociate,constraint-elimination,loop-mssa(loop-instsimplify,lo
op-simplifycfg,licm<no-allowspeculation>,loop-rotate<header-duplication;no-prepare-for-lto>,licm<allowspeculation>
,simple-loop-unswitch<nontrivial;trivial>),simplifycfg<bonus-inst-threshold=1;no-forward-switch-cond;switch-range-
to-icmp;no-switch-to-lookup;keep-loops;no-hoist-common-insts;no-sink-common-insts;speculate-blocks;simplify-cond-b
ranch>,instcombine<max-iterations=1;no-use-loop-info;no-verify-fixpoint>,loop(loop-idiom,indvars,loop-deletion,loo
p-unroll-full),sroa<modify-cfg>,vector-combine,mldst-motion<no-split-footer-bb>,gvn<>,sccp,bdce,instcombine<max-it
erations=1;no-use-loop-info;no-verify-fixpoint>,jump-threading,correlated-propagation,adce,memcpyopt,dse,move-auto
-init,loop-mssa(licm<allowspeculation>),coro-elide,simplifycfg<bonus-inst-threshold=1;no-forward-switch-cond;switc
h-range-to-icmp;no-switch-to-lookup;keep-loops;hoist-common-insts;sink-common-insts;speculate-blocks;simplify-cond
-branch>,instcombine<max-iterations=1;no-use-loop-info;no-verify-fixpoint>),function-attrs,function(require<should
-not-run-function-passes>),coro-split)),deadargelim,coro-cleanup,globalopt,globaldce,elim-avail-extern,rpo-functio
n-attrs,recompute-globalsaa,function<eager-inv>(float2int,lower-constant-intrinsics,chr,loop(loop-rotate<header-du
plication;no-prepare-for-lto>,loop-deletion),loop-distribute,inject-tli-mappings,loop-vectorize<no-interleave-forc
ed-only;no-vectorize-forced-only;>,infer-alignment,loop-load-elim,instcombine<max-iterations=1;no-use-loop-info;no
-verify-fixpoint>,simplifycfg<bonus-inst-threshold=1;forward-switch-cond;switch-range-to-icmp;switch-to-lookup;no-
keep-loops;hoist-common-insts;sink-common-insts;speculate-blocks;simplify-cond-branch>,slp-vectorizer,vector-combi
ne,instcombine<max-iterations=1;no-use-loop-info;no-verify-fixpoint>,loop-unroll<O3>,transform-warning,sroa<preser
ve-cfg>,infer-alignment,instcombine<max-iterations=1;no-use-loop-info;no-verify-fixpoint>,loop-mssa(licm<allowspec
ulation>),alignment-from-assumptions,loop-sink,instsimplify,div-rem-pairs,tailcallelim,simplifycfg<bonus-inst-thre
shold=1;no-forward-switch-cond;switch-range-to-icmp;no-switch-to-lookup;keep-loops;no-hoist-common-insts;no-sink-c
ommon-insts;speculate-blocks;simplify-cond-branch>),globaldce,constmerge,cg-profile,rel-lookup-table-converter,fun
ction(annotation-remarks),print
Compiler returned: 0

Conventions in MLIR/LLVM:
- `*-opt` command line tool: https://mlir.llvm.org/docs/Tutorials/MlirOpt/
- FileCheck” test: https://github.com/llvm/llvm-project/blob/main/mlir/test/Transforms/canonicalize.mlir#L1
- IR is “verified” for invariant between each pass: a pass assumes valid IR input and

produces valid IR output.

https://mlir.llvm.org/docs/Tutorials/MlirOpt/
https://github.com/llvm/llvm-project/blob/main/mlir/test/Transforms/canonicalize.mlir#L1

Hands-on: let’s play with a pass
1) Play with the scheduling
2) Debugging/logging API
3) Let’s do IR mutation
4) Diagnostics and remarks

C++ entities & ownership model
MLIR has a somehow unusual model:

- The MLIRContext (like in LLVM) holds some immutable entities for the duration of
its existence: Attributes and Types
(as such: the MLIRContext must always outlive your IR)

- Many classes are actually thin wrapper around a pointer:
- Concrete Ops, Types, and Attributes
- Ops add “convenient” / “type safe” APIs on top of the raw pointer they encapsulate.
- Passed by value everywhere: it’s just a reference-class, always the size of a pointer.
- Ownership of operations is their parent
- Top-level operation (or orphan ones) should be owned in RAII class (mlir::OwningOpRef)

In the box…
● IR (including serialization/deserialization to text and bytecode)
● Pass Manager
● Dialect Conversion Framework
● PDL/PDLL: bytecode for dynamic loading of pattern/matching logic.
● Transform Dialect: schedule and control transformation (underlying infrastructure for a Halide-like tool)
● DataFlow engine (forward, backward, bi-directional): EuroLLVM 2023 slides and recording
● IR Reduction tool
● Tracing / Debugging infra (“compiler fuel”, bisection, etc.) doc, slides and recording
● Python Bindings (documentation)
● EmitC: generating source code (C, C++, Cuda, OpenCL, …) (documentation)…
● …

“Batteries included”:
● Tensor Abstractions
● Hyper-rectangular code generation
● Affine/Polyhedral code generation
● Presburger arithmetic library
● Sparse tensors (TACO)
● GPU code generation infrastructure support
● Multi-dimensional Vector abstractions.
● OpenMP/OpenACC
● …

Targeting:
- Fast prototypes / experiments
- Research
- Teaching
- Production compilers

https://llvm.org/devmtg/2023-05/slides/TechnicalTalks-May10/07-TomEccles-JeffNiu-MLIRDataflowAnalysis.pdf
https://www.youtube.com/watch?v=5BijBv2TDnU
https://mlir.llvm.org/docs/ActionTracing/
https://mlir.llvm.org/OpenMeetings/2023-02-23-Actions.pdf
https://www.youtube.com/watch?v=ayQSyekVa3c
https://mlir.llvm.org/docs/Bindings/Python/
https://mlir.llvm.org/docs/Dialects/EmitC/

Resources

● Online doc and tutorials: https://mlir.llvm.org/

● GitHub: https://github.com/llvm/llvm-project/tree/main/mlir

● Discord (~Slack) https://discord.gg/upPwxtwA

● Discourse Forum: https://discourse.llvm.org/c/mlir/31

● Previous tech talks: https://mlir.llvm.org/talks/

● LLVM Conferences: https://www.youtube.com/@LLVMPROJ/search?query=MLIR

https://mlir.llvm.org/
https://github.com/llvm/llvm-project/tree/main/mlir
https://discord.gg/upPwxtwA
https://discourse.llvm.org/c/mlir/31
https://mlir.llvm.org/talks/
https://www.youtube.com/@LLVMPROJ/search?query=MLIR

